La componente minerale
La componente organica
Gli ormoni come protagonisti delle diverse fasi in vitro della micropropagazione (23.08.2012)
Caratteristiche di alcuni dei mezzi di coltura più utilizzati
Le condizioni ambientali della camera di crescita
La luce come fattore di crescita
Caratteristiche di alcuni dei mezzi di coltura più utilizzati
Le condizioni ambientali della camera di crescita
La luce come fattore di crescita
Le cellule di organi vegetali o i
tessuti della pianta stessa possono essere indotte a crescere ed a
moltiplicarsi se poste in opportune condizioni ambientali. Le cellule, anche se
prelevate da tessuti già differenziati, sono in grado di regredire la loro
differenziazione sviluppando ammassi amorfi, callosi, che possono essere
mantenuti in definitivamente in vitro o possono essere indotti a rigenerare
organi o piante intere completamente differenziati. Oggi è possibile prelevare
e coltivare in vitro un gran numero di cellule di diverse piante, anche se
alcune varietà e specie risultano essere ancora recalcitranti ad una loro
proliferazione in vitro. Ciò è dovuto non tanto a fattori genetici o biologici
delle pianta o della cellula ma alla cattiva od errata scelta della condizioni
colturali ed ambientali. Il substrato su cui si sviluppano le colture in vitro deve garantire che l’espianto abbia disponibilità di tutte le sostanze di cui questo necessita. In esso saranno pertanto disciolti elementi minerali, quali azoto, fosforo e potassio, che costituiscono i cosiddetti macroelementi, poiché necessari in quantità relativamente elevate. Tuttavia, per la sopravvivenza della pianta sono necessari anche altri elementi, sia pure in quantità minore: essi prendono il nome di microelementi ed i più importanti sono calcio, zolfo, magnesio, sodio, manganese, zinco, boro, iodio, molibdeno, rame, cobalto, ferro. Il substrato dovrà poi contenere una fonte di carbonio: a tale scopo si utilizza uno zucchero, generalmente il saccarosio. Inoltre, a seconda del tipo di espianto che si intende coltivare, potranno essere necessarie altre sostanze, quali aminoacidi, vitamine e soprattutto ormoni. Il substrato, previa verifica del pH (che generalmente deve oscillare intorno a 5.8) viene poi solidificato con l’aggiunta di agar, una specie di farina ottenuta da un’alga. Il tutto viene portato ad alta temperatura: in questo modo se ne ottiene anche la sterilizzazione, fondamentale per impedire lo sviluppo di muffe ed altri organismi saprofiti che potrebbero mettere a repentaglio la sopravvivenza stessa dell’espianto. Con il raffreddamento il substrato si solidifica ed assume un aspetto gelatinoso (quale quello di un budino): finalmente sarà possibile deporvi l’espianto, avendo cura di mantenere sempre l’assoluta sterilità all’interno del contenitore che si utilizza. In queste condizioni l’espianto si sviluppa ed origina una piantina in miniatura, la quale potrà fornire ulteriore materiale per successivi cicli di coltivazioni in vitro, oppure venire trasferita, con le opportune cautele, in condizioni di crescita più naturali.
La preparazione del substrato di crescita riveste un’importanza fondamentale in ogni fase in vitro del ciclo di propagazione. Per ogni specie e per ogni fase, infatti, vi è uno specifico substrato. La scelta degli elementi che devono far parte del substrato deve essere accurata sia nel tipo che nella concentrazione. Per le specie gia conosciute esistono delle formulazioni che portano il nome dei loro scopritori, il più noto dei quali è il Murashige & Skoog (1962) (M&S), mentre per le nuove specie che devono essere micropropagate, si deve procedere empiricamente e mettere a punto un substrato adatto.Essenzialmente in un substrato di crescita bisogna considerare:
1) la componente minerale;
2) la componente organica;
La componente minerale
La componente minerale è costituita da:
macroelementi: rappresentano i principali elementi indispensabili per la crescita delle piante e sono azoto, fosforo, potassio, calcio, magnesio, e zolfo. Le formulazioni con cui si possono utilizzare e le concentrazioni variano tra i vari substrati e dipendono dalla specie utilizzata.
microelementi: sono presenti nei substrati in piccole quantità, sono metalli, e hanno notevole importanza poiché svolgono un ruolo essenziale nei vari processi metabolici e fisiologici della pianta. I microelementi principali utilizzati per la micropropagazione sono ferro manganese, zinco, boro, rame, cobalto e molibdeno . Il ferro viene somministrato in forma di chelato (FeEDTA).
La componente organica.
La componente oraganica è rappresentata essenzialmente da:
1) carboidrati;
2) vitamine;
3) regolatori di crescita;
4) agar
1) I carboidrati: bisogna considerare che nell’ambiente in vitro i germogli non riescono ad espletare la normale attività di fotosintesi sia perché gli scambi gassosi sono ridotti per la presenza del film plastico che riveste il contenitore, quindi non riescono ad avere la giusta quantità di CO2, sia perchè l’intensità luminosa della camera di crescita è molto bassa. Di conseguenza per ovviare ad una insufficiente attività fotosintetica, si rende indispensabile la aggiunta al substrato di crescita del saccarosio, come sorgente energetica, in concentrazioni che oscillano intorno al 2-4%. L’ elevata presenza di zucchero riveste inoltre una notevole importanza anche nella regolazione del potenziale osmotico del mezzo di coltura, condizionando l’assimilazione dell’acqua e degli elementi nutritivi ed influenzando indirettamente la capacità di crescita dei tessuti. La presenza di zucchero nel mezzo di coltura, può essere rischioso da un punto di vista fitosanitario, creando un ambiente adatto per lo sviluppo di funghi e batteri. Oltre al saccarosio si possono somministrare altri zuccheri semplici come glucosio e fruttosio.
2) vitamine: svolgono, quando presenti, una funzione di cofattore della crescita entrando a far parte di diverse attività cellulari. Le più utilizzate sono tiamina (0,1-0,5 mg/l), mio-inositolo e biotina (0,1mg/l), acido nicotinico e piridossina.
3) regolatori della crescita: la presenza dei regolatori della crescita è il fattore che caratterizza la diverse fasi del ciclo di propagazione. Sebbene nelle piante gli ormoni non abbiano un’azione specifica, considerato che uno stesso effetto potrebbe essere stimolato da ormoni diversi, in alcune fasi la presenza di alcuni di essi influisce in maniera marcata sul tipo di risposta dei germogli. Nella micropropagazione gli ormoni più utilizzati sono:
· auxina
· citochinina
· gibberellina
Oltre agli effetti prodotti dalla concentrazione dei singoli ormoni bisogna considerare il bilancio ormonale, cioè il rapporto tra le concentrazioni dei vari ormoni che in base alla fase in cui si opera, deve essere sbilanciato verso un tipo di ormone rispetto ad un altro, in relazione alle risposte che si desiderano. La concentrazione e le combinazioni in cui vengono utilizzati variano notevolmente in funzione della specie vegetale.
4) agar: un’altra importante componente organica del substarto di coltura è l’agar che conferisce allo stesso una consistenza gelatinosa; in questo modo è possibile mantenere i germogli in posizione eretta; questi viene aggiunto al substrato prima dell’autoclavazione a concentrazione di 5-7 g/l. Unico svantaggio è che rallenta la diffusione dei nutrienti all’interno del substrato, quindi i germogli possono assorbire solo gli elementi presenti intorno alla loro base. Per questo motivo il rinnovo del substrato si rende necessario e frequente. Altra componente organica che talvolta viene usata nella micropropagazione è la pectina che spesso è aggiunta al mezzo di coltura per ridurre i fenomeni di vitrescenza.
Gli ormoni come protagonisti delle diverse fasi in vitro della micropropagazione. (23.08.2012)
Quando si parla di fitoregolatori o regolatori della crescita o più semplicemente di ormoni, ci riferiamo a sostanze che prodotte in piccole quantità stimolano, a distanza dalla zona di produzione, alcune attività fisiologiche della pianta. Nel campo della coltura in vitro la presenza di fitoregolatori nelle diverse fasi di crescita dei germogli, in particolar modo moltiplicazione e radicazione, spesso si rende necessaria per favorire alcuni processi di differenziamento dei tessuti che normalmente non accadrebbero. Gli ormoni più comunemente utilizzati sono auxina, citochinina e gibberellina. Il loro utilizzo, così come le concentrazioni ed il tipo di formulazione, dipende dalla fase del ciclo in cui si opera e dalla specie trattata.
Il destino della cellula
uovo fecondata, cioè il suo sviluppo e la sua differenziazione in un vegetale
adulto pluricellulare, è determinato dalsuo corredo genetico. Molti fattori
esterni interferiscono però con la espressione della potenzialità genetica, condizionandola
in vario modo. È noto infatti come due zigoti perfettamente identici
sviluppino organismi molto diversi se cresciuti in differenti condizioni
ambientali. La luce, la temperatura, la presenza di parassiti, la competizione con altri
organismi vicini sono alcuni dei fattori che condizionano l'espressione
fenotipica del corredo genetico dello zigote vegetale. Così la mancanza di luce
determina, spesso, un allungamento del fusto della pianta, la siccità del suolo
provoca un aumento dell'apparato radicale, condizioni avverse di temperatura
determinano un rallentamento dello sviluppo. Un ruolo di estrema importanza come regolatori
della crescita e della differenziazione
rivestono negli organismi vegetali, così come in quelli
animali,
gli ormoni. Questi sono sostanze chimiche a struttura relativamente semplice
che, prodotte in certe zone della pianta, in risposta ad opportuni stimoli sia interni che esterni,
vengono traslocate in zone più o meno lontane ove condizionano le attività metaboliche
delle cellule e quindi lo sviluppo di tutto l'organismo. I
fitormoni oggi conosciuti sono classificabili, in base alla funzione, in tre
gruppi principali: auxine, gibberelline e citochining. Gli ormoni di ciascuno
di questi gruppi provocano un largo spettro di risposte biologiche da parte
della pianta e questi spettri spesso si sovrappongono. Altri ormoni vegetali
oggi conosciuti sono l'acido abscissico e Petilene.
Quando si parla di fitoregolatori o regolatori della crescita o più semplicemente di ormoni, ci riferiamo a sostanze che prodotte in piccole quantità stimolano, a distanza dalla zona di produzione, alcune attività fisiologiche della pianta. Nel campo della coltura in vitro la presenza di fitoregolatori nelle diverse fasi di crescita dei germogli, in particolar modo moltiplicazione e radicazione, spesso si rende necessaria per favorire alcuni processi di differenziamento dei tessuti che normalmente non accadrebbero. Gli ormoni più comunemente utilizzati sono auxina, citochinina e gibberellina. Il loro utilizzo, così come le concentrazioni ed il tipo di formulazione, dipende dalla fase del ciclo in cui si opera e dalla specie trattata.


3) gibberelline: La
storia della loro scoperta è interessante: nel 1926 fu scoperta in Giappone una
malattia del riso provocata dal fungo parassita Gibberella fujikuroi. Il
fungo produceva una sostanza, la gibberellina, che determinava allungamento del
fusto e delle foglie stimolando sia la divisione che l'allungamento cellulare.
Le piante crescevano, così, sottili e deboli. Solo trent'anni più tardi, con
l'isolamento di una sostanza ad azione gibberellinica da una pianta superiore,
il fagiolo (Phaseolus vugaris), si ebbe la dimostrazione che anche piante
in condizioni fisiologiche normali contengono gibberelline e che la malattia
del riso era causata quindi da un eccesso di tale sostanza nella pianta. Negli
ultimi anni più di trenta differenti gibberelline sono state isolate da
diverse piante. La GA3 è la gibberellina più abbondante nei funghi, le altre
gibberelline hanno una struttura chimica simile e differiscono dalla GA3 per
piccole modifiche strutturali. Stimolano la crescita delle piante e l'espansione
fogliare influendo sia sulla divisione che sull'allungamento cellulare.
L'effetto più evidente sulla pianta è un allungamento del fusto che cresce
lungo e sottile, con pochi rami. Sulla capacità di stimolare la crescita di
piante nane si basa appunto il test biologico più usato. Aumentano le
dimensioni dei frutti, specialmente se somministrate assieme alle auxine.
Stimolano inoltre, come le auxine, lo sviluppo di frutti partenocarpici. Interrompono la
dormienza del seme, inducendone la germinazione. Studi sul meccanismo di azione
delle gibberelline sono stati effettuati prevalentemente su semi di orzo (Hordeum
vulgare), soprattutto in relazione ai problemi pratici della industria
della birra. Quando il seme inizia la germinazione, l'embrione rilascia
gibberellina. In risposta a ciò, uno strato di cellule specializzate, le
cellule dell'aleurone, produce a-amilasi ed altri enzimi idrolitici
necessari per l'utilizzazione delle riserve di polisaccaridi presenti
nell'endosperma. Sintesi di RNA e di proteine sono indispensabili per la
comparsa degli enzimi. Ciò ha suggerito che la gibberellina possa essere
responsabile dell'attivazione dei geni per la sintesi degli enzimi stessi. Fra i regolatori di crescita sono le meno usate, sebbene in alcuni casi il loro impiego appaia essenziale. Esse favoriscono l’allungamento degli internodi e possono dare buoni risultati nella fase precedente la radicazione deo germogli. La più utilizzata è la GA3 (acido gibberellico). In generale nella coltura in vitro è il giusto bilanciamento tra citochinina e auxina ad influenzare le fasi di proliferazione e radicazione.
4) Acido
abscissico (o dormina):
è considerato il diretto antagonista dell'azione degli ormoni della
crescita (auxine, gibberelline e citochinine). Scoperto, isolato e
caratterizzato chimicamente dopo il 1960, esso è identico alla dormina,
caratterizzata dalla proprietà di interferire con l'azione stimolante di IAA
sullo sviluppo del germoglio. Nulla si conosce sul luogo di sintesi
dell'ormone; si sa solo che esso si accumula in particolare nelle foglie e nei
frutti poco prima del distacco dalla pianta. Lo si trova, inoltre, nelle gemme
e nei semi dormienti. L'acido
abscissico : Accelera l'appassimento e il distacco delle foglie e dei frutti. Inibisce lo sviluppo delle gemme. Le gemme
invernali sono ricche di ormone. Inibisce la germinazione del seme durante il periodo di
dormienza. L'acido abscissico accelera anche la senescenza di
cellule vegetali coltivate in vitro. E’ stato dimostrato ad esempio che calli di mimosa
(Mimosa Pudica) invecchiano e muoiono entro una settimana dall'aggiunta
di acido abscissico. Ciò ha permesso di intraprendere una serie di ricerche
intese a chiarire il meccanismo con cui l'ormone agisce sul metabolismo
cellulare. L'effetto primario non è stato ancora chiarito. Due sono le ipotesi
correnti: la prima è che l'ormone agisca alterando l'integrità delle membrane e
favorendo così la perdita di soluti dalla cellula. La seconda, basata
sull'osservazione sperimentale che l'acido abscissico induce errori nella
sintesi di RNA messaggero, è, invece, che l'ormone interferisca direttamente
con la lettura del codice genetico durante la trascrizione.
5) Etilene: è l'ormone a struttura chimica più semplice ed è l'unico, sinora identificato, gassoso a temperatura ambiente. La prima descrizione dei suoi effetti si può già trovare in pubblicazioni del 1858, quando si osservò che le piante poste in ambienti riscaldati con stufe a cherosene si sviluppavano in un modo caratteristico. All'inizio del secolo venne chiarito che tali effetti biologici sono provocati dall'etilene, un prodotto della combustione incompleta del cherosene.
Uno degli effetti più appariscenti dell'etilene,
la stimolazione della colorazione e della maturazione dei frutti, è stato, ed
è tuttora, largamente usato in agricoltura. Solo successivamente, cioè dopo il 1930, fu data la spiegazione dei
curiosi effetti attribuiti a questo semplice gas: fu scoperto infatti che
l'etilene è normalmente presente in natura in diversi tessuti della pianta ove
esercita attività di regolazione tipicamente ormonali. L'ormone si trova
nei frutti (soprattutto in maturazione), ma anche nei fiori, nelle foglie, nei
germogli e nelle radici. Poco si sa sul luogo
di sintesi. Durante la germinazione esso è prodotto nelle cellule apicali.
Nella pianta adulta è sintetizzato in sedi diverse (frutto, fiore, ecc.) a
seconda della fase di vita della pianta stessa. Maggiori informazioni sì hanno sul meccanismo di biosintesi. Esperimenti
con precursori radioattivi hanno mostrato che i suoi due atomi di carbonio
derivano dal carbonio in posizione 3 e 4 della metionina. La sintesi richiede
energia fornita dalla attività del mitocondrio. Gli effetti dell'etilene sulle
piante sono diversi. Esso: inibisce la
divisione cellulare sia nelle radici che nello stelo. E’ stato dimostrato che
l'effetto dell'etilene è quello di bloccare il processo mitotico inibendo la
sintesi di DNA nei meristemi. La sintesi di RNA non è, al contrario, inibita; inibisce fortemente l'allungamento cellulare; stimola, come sopra accennato, la maturazione dei
frutti; annulla la dominanza apicale e permette alle gemme ascellari di
svilupparsi, in modo simile a quanto si ottiene recidendo la gemma apicale; annulla il geotropismo positivo delle radici; è
responsabile della curvatura ad uncino dell'apice vegetativo durante
l'emergenza sotterranea del germinello del seme. Nulla si sa sul meccanismo di azione primario. Gli unici dati sperimentali
concreti, a riguardo, sono quelli che suggeriscono che l'etilene, per agire,
debba formare un complesso reversibile con un accettore contenente un metallo,
forse rame. Interessanti sono anche le ricerche intese a chiarire la
interazione tra l'etilene e gli altri ormoni, soprattutto l'auxina. Ad esempio,
sì sa che l'etilene è presente negli apici vegetativi, ma negli apici
vegetativi è presente anche auxina. Il fatto che l'etilene non inibisca
completamente l'allungamento e la divisione cellulare dell'apice è quindi
probabilmente legato ad un equilibrio tra i due ormoni. Tra le varie
osservazioni sperimentali, interessante è quella riguardante il fenomeno della
curvatura dell'apice vegetativo durante le prime fasi di sviluppo sotterraneo,
prima della uscita fuori terra. La curvatura è correlata con la presenza di
etilene. Uscendo alla luce l'apice si raddrizza: la luce, o meglio la sua
componente rossa (650-700 nm di lunghezza d'onda), esercita infatti un'azione
inibitoria sulla sintesi di etilene nell'apice stesso, lasciando quindi via
libera all'azione degli altri ormoni. Ulteriori osservazioni sperimentali
mostrano, d'altra parte, che la sintesi di etilene è stimolata dalla auxina: la
somministrazione di auxina determina infatti, entro mezz'ora, la sintesi di
etilene e tale sintesi termina non appena l'auxina viene eliminata. Si sono
definiti, quindi, due fattori che possono controllare la concentrazione
d'etilene nella pianta. Uno di essi, la luce rossa, ne inibisce la sintesi,
un'altro, la auxina, la stimola. Ulteriori ricerche sono ora necessarie per
chiarire il significato biologico dì queste osservazioni e per definire altri
eventuali meccanismi di controllo della sintesi di etilene.
5) Etilene: è l'ormone a struttura chimica più semplice ed è l'unico, sinora identificato, gassoso a temperatura ambiente. La prima descrizione dei suoi effetti si può già trovare in pubblicazioni del 1858, quando si osservò che le piante poste in ambienti riscaldati con stufe a cherosene si sviluppavano in un modo caratteristico. All'inizio del secolo venne chiarito che tali effetti biologici sono provocati dall'etilene, un prodotto della combustione incompleta del cherosene.

Caratteristiche di alcuni dei mezzi di coltura piu utilizzati
La scelta del mezzo di coltura è in funzione delle specie da allevare in vitro. Alcune specie, a differenza di altre, sono sensibili ad un contenuto elevato di sali, o hanno esigenze diverse per quanto riguarda i fitoregolatori di crescita. L'età della pianta ha inoltre una sua influenza. Per esempio tessuti giovani, generalmente, sono in grado di rigenerare radici con una maggiore rapidita rispetto a tessuti adulti. Il tipo di organo prescelto è inoltre importante, per esempio le radici richiedono tiamina. Inoltre in funzione dell'obiettivo perseguito, l'apporto di auxine sarà necessario per l'induzione di radici mentre l'alterazione del rapporto citochinine/auxine sara fondamentale per l'induzione e lo sviluppo di gemme avventizie. Le formulazioni dei mezzi di coltura sono frutto di prove sistematiche e di sperimentazione. La tabella mette a confronto la composizione di alcuni mezzi di coltura comunemente utilizzati nella coltura di tessuti vegetali in relazione ai loro componenti espressi in milligrammi/litro e concentrazione molare. Il mezzo di Murashige e Skoog (MS) (1962) è il mezzo base più comunemente usato e piu idoneo per indurre rigenerazione da tessuti e da callo. Esso fu creato per it tabacco essenzialmente sulla base delle analisi dei componenti dei tessuti di tale pianta. E' un mezzo di coltura ad elevato contenuto salino a causa dei sali di K ed N. Il mezzo di Linsmaier e Skoog (1965) è, per quanto riguarda la parte inorganica, fondamentalmente eguale al mezzo di Murashige e Skoog (1962), mentre dei componenti organici mantiene solamente l'inositolo e la tiamina. Per superare la sensibilita di alcune specie arboree all'elevato contenuto salino, Lloyd e McCown (1980) elaborarono un mezzo di coltura definito Woody Plant Medium (WPM).
Alcuni dei mezzi di coltura piu comuni vengono commercializzati in polvere, gia pronti per l'uso. II loro impiego è molto semplice ed implica solamente il dissolvimento del contenuto della confezione in uno specifico volume di acqua. Dei mezzi di coltura più utilizzati possono essere acquistati separatamente i sali, le vitamine, o l'intero mezzo con o senza fitoregolatori di crescita, agar e saccarosio. Tali prodotti sono convenienti, meno soggetti ad errori, e rendono superfluo l'uso di soluzioni concentrate. Tuttavia, il loro impiego risulta pitt costoso rispetto alla preparazione autonoma dei mezzi di coltura.
Le condizioni ambientali della camera di crescita.

I fattori ambientali più importanti che influenzano la vita dei germogli sono:
1) Temperatura;
2) Umidità relativa;
3) Luce.
La temperatura ideale, per le colture in vitro, varia con la specie anche se generalmente si utilizzano temperature costanti di circa 23- 25 °C . A temperature maggiori si ha una maggior accrescimento ma anche problemi di vitrescenza. Inoltre, all’interno l’ umidità relativa può raggiungere la saturazione. Questo fenomeno, dovuto al limitato scambio gassoso con l’esterno per la presenza del film plastico che riveste il vaso, comporta una serie di modificazioni fisiologiche ed anatomiche che rendono il germoglio incapace di regolare la traspirazione tramite l’attività stomatica. Per questo si rende necessario il periodo di acclimatazione. Tuttavia, diminuendo l’umidità relativa si è visto che l’accrescimento dei germogli è consistentemente ridotto.
La luce come fattore di crescita
Una trattazione particolare in merito ai fattori ambientali, che
influenzano l’attività delle piante allevate
in vitro, merita la luce. In vivo ad essa viene riconosciuta una
duplice funzione:
a) Fonte primaria di energia;
b) Fonte di informazione;
In vitro, infatti l’attività fotosintetica viene alterata dalle
condizioni microclimatiche che si creano nel contenitore di vetro. I ridotti
scambi gassosi, e quindi la carenza di CO2, dovuti al film trasparente che riveste
il vaso e le alterazioni anatomiche e fisiologiche indotte sui germogli da
particolari fattori ambientali, non creano le condizioni ottimali per lo
svolgimento della normale attività fotosintetica. La fonte di carboidrati per i
germogli allevati in vitro deriva, dunque dal substrato, così da considerare le
colture eterotrofe e non più autotrofe.
Più che come fonte di energia la luce svolge, per le colture in vitro,
una importante funzione di informazione per fenomeni fotomorfogenetici, che si
verificano nei diversi stadi della micropropagazione. I diversi fenomeni fotomorfogenetici dipendono essenzialmente da:
1. fotoperiodo
2. intensità luminosa
3. qualità della luce
Complimenti. Scritto e spiegato in maniera molto chiara. Comprensibile anche per chi legge solo per curiosità.
RispondiElimina